
Implementation of CG Method on GPU Cluster
with Proprietary Interconnect TCA

for GPU Direct Communication

Kazuya MATSUMOTO†1, Toshihiro HANAWA†2 , Yuetsu KODAMA†4 ,
Hisafumi FUJII†5 , Taisuke BOKU†1,3

†1 Center for Computational Sciences, University of Tsukuba

†2 Information Technology Center, The University of Tokyo

†3 Graduate School of Systems and Information Engineering, University of Tsukuba

†4 RIKEN Advanced Institute for Computational Science

†5 FUJITSU Software Technologies Limited

AsHES 2015
May 25, 2015

Outline

• Background and Motivation

• TCA (Tightly Coupled Accelerators) Architecture

• Collective Communication
• Allgather and Allreduce

• CG Method

• Conclusion

2

Background

• GPU clusters are common as HPC systems
• High peak performance / cost ratio

• High peak performance / power ratio

• Strong scaling on GPU clusters is difficult.
• Large gap between computation perf. and communication perf.

• Communication latency between GPUs is larger than between CPUs

• Improving communication performance between GPUs is
demanded for HPC
• Our target is to develop a direct communication system between

GPUs over different nodes for future accelerated computing
⇒ Tightly Coupled Accelerators (TCA) architecture

3

Our Previous Work on TCA

1. “Tightly Coupled Accelerators Architecture for
Minimizing Communication Latency among
Accelerators,” In AsHES 2013.
• Introduction (descriptions) on the TCA architecture

• Performance evaluation on the ping-pong communication of
TCA

2. “QCD Library for GPU Cluster with Proprietary
Interconnect for GPU Direct Communication,”
In HeteroPar 2014.
• Application of TCA to improve the communication

performance in QUDA QCD library

4

Motivation

• Further performance evaluation of TCA

• Implementing CG method by using TCA
• CG method: Iterative solution for systems of linear equations

• Implementing allgather and allreduce collective
communication with TCA API

• Evaluating the performance and seeing how TCA is
effective

5

Outline

• Background and Motivation

• TCA (Tightly Coupled Accelerators) Architecture

• Collective Communication
• Allgather and Allreduce

• CG Method

• Conclusion

6

TCA (Tightly Coupled Accelerators)
Architecture

• Technology for direct connection between accelerators
(GPUs) over different nodes without CPU assistance.
• Low communication latency

• By eliminating extra data copy to the host (CPU)

• Improves strong scalability

7

CPU
PCIe Switch

Node

CPU Memory

P
C

I
e

GPU

GPU Memory

P
C e

CPU
PCIe Switch

Node

CPU Memory

P
C

I
e

GPU

GPU Memory

P
C e

PCIePEACH2 PEACH2

PEACH2

• PCI Express Adaptive Communication Hub ver. 2

• Implementation of TCA by FPGA

• Enables direct connection between GPUs with
PCI-Express (PCIe) technology
• Direct data copy is accomplished by NVIDIA GPUDirect

Support for RDMA (GDR)

• Protocol conversion is not required
⇒ Lower latency than InfiniBand

• Contains 4 PCIe ports (3 external ports)
• Each port has PCIe Gen2 x8 bandwidth (4 GB/s peak)

• NOTE: For convenience, we call this implementation of
TCA on PEACH2 as “TCA”.

8

HA-PACS/TCA

• Proof-of-concept GPU cluster of TCA concept in HA-PACS
project

• 64 compute nodes in total
• 4 sub-clusters each of which

consists of 16 nodes

• PEACH2 is equipped with
• Sub-cluster configures 2x8 ring (torus) network.

• By connecting 3 neighbor nodes
through 3 PCIe ports of PEACH2

• MPI communication through InfiniBand
is also possible.
• Can be considered to be a normal GPU cluster

• Full-bisection bandwidth fat-tree network.

9

Performance Evaluation Condition

• Evaluation on
a sub-cluster of
HA-PACS/TCA
• Up to 16 nodes

(processes)

• Using 1 GPU / node

Hardware

CPU Intel Xeon E5-2680 2.8 GHz × 2

(IvyBridge 10 cores / CPU)

GPU NVIDIA Tesla K20X × 4

(Kepler GK110 2688 cores / GPU)

TCA PEACH2 board
(Altera Stratix-IV GX 530 FPGA)

InfiniBand Mellanox Connect-X3 Dual-port
QDR

Software

CUDA 6.5

MPI MVAPICH 2 GDR 2.1a

C Compiler Intel Compiler 14.0.3

10

CPU0

GPU0 GPU1

PEACH2
Infini
Band

G
2

 x
1

6

CPU1

GPU2 GPU3

PCIe

G
2

 x
1

6

G
2

 x
1

6

G
2

 x
1

6

G
2

 x
8

G
2

 x
8

G2 x8G2 x8 QPI G3 x8

MPI (MVAPICH2-GDR)

• We compare the performance of implementation using
TCA with using MPI communication.

• MPI Impl.: MVAPICH2-GDR 2.1a（MV2GDR)

• MPI implementation for InfiniBand

• As with TCA, MV2GDR utilizes GPU Direct for RMA (GDR) to
improve latency and bandwidth for small data
communication

11

Ping-pong GPU-to-GPU Communication
Performance

Latency Bandwidth

12

B
etter

B
et

te
r

• TCA/PEACH2 is better for small sizes.
• For large sizes, TCA is outperformed by MPI/IB since the difference of peak

bandwidth perf. (4 GB/s vs. 8 GB/s) → How about collective communications?

0

2

4

6

8

10

12

8 128 2048

La
te

n
cy

 [
μ

se
c]

Data size [Bytes]

MPI/IB

TCA/PEACH2 (DMA)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

8 512 32768 2097152

B
an

d
w

id
th

 [
G

B
/s

]

Data size [Bytes]

TCA/PEACH2 (DMA)

MPI/IB

Outline

• Background and Motivation

• TCA (Tightly Coupled Accelerators) Architecture

• Collective Communication
• Allgather and Allreduce

• CG Method

• Conclusion

13

TCA Implementation of
Collective Communication

• Allgather
• All processes gather data of each process.

• Gathering data of KB-MB order
• Communication bandwidth as well as latency is important.

• Allreduce
• Conducts specified operation (sum, max, …) among

data arrays (𝑥𝑖) of each process and store the reduction
result in all processes.

• Targeted for CG method, we implement and tune
allreduce (sum) for double-precision scalar (8 Bytes) data.

- (𝑥0 + 𝑥1 + 𝑥2 + 𝑥3 = 𝑖=0
3 𝑥𝑖)

• Latency decides the performance.

14

Algorithms for Collective Communication

• Implement and evaluate 4 algorithms

15

We suppose
#processes (p) is
in power of 2.

Allgather Implementation:
Recursive Doubling (In case #processes = 16)

• Requires 4 (= log2p) steps

• Node mapping optimization
1. Same hop counts between

any nodes in every step

2. Communicate data with
neighbor node in the last
step

16

3 5

71

2 4

0 6

11 13

159

10 12

8 14

Step 1

3 5

71

2 4

0 6

11 13

159

10 12

8 14

Step 2

3 5

71

2 4

0 6

11 13

159

10 12

8 14

Step 4

3 5

71

2 4

0 6

11 13

159

10 12

8 14

Step 3

3 5

71

2 4

0 6

11 13

159

10 12

8 14

Initial
state

Impact of Node Mapping to
Allgather Performance (#Processes=16)

17

0

50

100

150

200

250

300

350

0 64 128 192 256

C
o

m
m

u
n

ic
at

io
n

 t
im

e
[μ

se
c]

Gathered data size [KB]

Non-optimized

Optimized

3 4

52

1 6

0 7

12 11

1013

14 9

15 8

3 5

71

2 4

0 6

11 13

159

10 12

8 14

Non-optimized

Optimized

B
etter

Allgather Perfomance Comparison among
Different Algorithms

• Time for all-gathering 128 KB data

• N=16384 case in CG method

• Recursive Doubling shows good performance

• However, when p=16, TCA is slower than MPI for this size

18

0

50

100

150

200

250

2 4 8 16C
o

m
m

u
n

ic
at

io
n

 t
im

e
[μ

se
c]

#Processes

Ring Neighbor Exchange Recursive Doubling Dissemination MPI

B
etter

Allgather Performance (#Processes=16)

19

B
etter

0

50

100

150

200

250

0 32 64 96 128 160 192 224 256

C
o

m
m

u
n

ic
at

io
n

 t
im

e
[μ

se
c]

Gathered data size [KB]

MPI/IB

TCA/PEACH2

Allgather Performance (#Processes=4)

20

B
etter

0

50

100

150

200

250

0 32 64 96 128 160 192 224 256

C
o

m
m

u
n

ic
at

io
n

 t
im

e
[μ

se
c]

Gathered data size [KB]

MPI/IB

TCA/PEACH2

Allreduce Performance

• CPU-to-CPU allreduce time for 8 Bytes scalar data

• Dissemination algorithm is the fastest.

• TCA/PEACH2 is more than 2x faster than MPI/IB
• Low latency of TCA works effectively

21

B
etter

0

5

10

15

20

25

2 4 8 16C
o

m
m

u
n

it
io

n
 t

im
e

[μ
se

c]

#Processes

Ring Neighbor Exchange Recursive Doubling Dissemination MPI

Outline

• Background and Motivation

• TCA (Tightly Coupled Accelerators) Architecture

• Collective Communication
• Allgather and Allreduce

• CG Method

• Conclusion

22

CG (Conjugate Gradient) Method

• Iterative solution for systems of linear
equations
• Ax = b

• A: N-by-N symmetric positive-definite
matrix (sparse matrix)
• Sparse matrix is stored in

CRS (Compressed Row Storage) order.

• x, b: N-dimensional vector
• No preprocessing

• Main computation parts
（NVIDIA’s cuSPARSE and cuBLAS are utilized）
• SpMV x1 – Sparse Matrix-Vector Multiply

(q := Ap)
• DOT x3 – Vector Dot Product (α := pTq)
• AXPY x3 – Vector Multiply-Add (y := αx + y)

23

Parallelization of CG Method

• Parallelized by row-wise

one-dimensional partitioning

of matrix A

24

N

N

A0

A1

A2

A3

x0

x1

x2

x3

b0

b1

b2

b3

rank0

rank1

rank2

rank3

=

N/4

In case
#processes = 4

Parallelization of CG Method

• Parallelized CG method requires

collective communications

among all processes

1. Allgather : Gathering required
vector data for SpMV

2. Allreduce: Reduction for having
the summation of the local dot
product

• Implemented collective
communications are utilized.

25

CG Method Performance:
Target Sparse Matrices

• Sparse matrices are from Univ. Florida Sparse Matrix
Collection

• Matrix size (#Rows) is 1,000s to 10,000s

26

Matrix
Name

nasa2910 smt nd6k nd24k

#Rows (N） 2,910 25,710 18,000 72,000

#Non-zero
(nnz)

174,296 3,753,184 6,897,316 28,715,634

nnz/N 59.9 146.0 383.2 398.8

CG Method Performance

• Time for 1,000 iterations
• Allgather is implemented with

recursive doubling

• Allreduce is implemented with
dissemination algo.

• For nd6k, nd24k, parallelization
yields improvement.

• For smt, using 4 processes is the
fastest.

• For nasa2910, parallelization
deteriorates the performance.

27

Matrix
name

nasa2910 smt nd6k nd24k

#Rows
(N)

2,910 25,710 18,000 72,000

0

500

1000

1500

2000

2500

nasa2910 smt nd6k nd24k

Ex
e

cu
ti

o
n

 t
im

e
 [

m
se

c]

p=1 p=2 p=4 p=8 p=16

B
etter

CG Method Performance:
Time breakdown (nasa2910)

N=2,910, nnz=174,296

• TCA is faster than MPI, but performance does not scale

28

Breakdown of rank0

0

50

100

150

200

250

300

350

Serial TCA MPI TCA MPI TCA MPI TCA MPI

p=1 p=2 p=4 p=8 p=16

Ex
e

cu
ti

o
n

 t
im

e
 [

m
se

c]

Allreduce

Allgather

Others

AXPY

DOT

SpMV

B
etter

CG Method Performance:
Time breakdown (smt)

N=25,710, nnz=3,753,184

• TCA improves the performance.

29

Breakdown of rank0

B
etter

0

100

200

300

400

500

600

Serial TCA MPI TCA MPI TCA MPI TCA MPI

p=1 p=2 p=4 p=8 p=16

Ex
e

cu
ti

o
n

 t
im

e
 [

m
se

c]

Allreduce

Allgather

Others

AXPY

DOT

SpMV

CG Method Performance:
Time breakdown (nd24k)

N=72,000, nnz=28,715,634

• Performance scale well, but TCA is not faster than MPI.

30

Breakdown of rank0

B
etter

0

500

1000

1500

2000

2500

Serial TCA MPI TCA MPI TCA MPI TCA MPI

p=1 p=2 p=4 p=8 p=16

Ex
e

cu
ti

o
n

 t
im

e
 [

m
se

c]

Allreduce

Allgather

Others

AXPY

DOT

SpMV

Discussion

Matrix size Small
（1,000s）

Medium
（10,000s）

Large

Performance
improvement by TCA

Large Not-so-bad No

Strong scalability No Not-so-bad High

31

• Implementing CG method with one-dimensional
partitioning is not very suitable for TCA utilization.
• We plan to implement and evaluate CG method with two

dimensional partitioning.

Conclusion

• Collective communication using TCA/PEACH2’s low
latency communication improves the performance
for small sizes.

• TCA improves the performance of CG method under
specific conditions (10,000s rows of matrix).

• We will continue the research on TCA

• Future work:
Making performance models to predict impact of TCA
utilization to the performance.

32

